skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "RAJAGURU, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Expansion mutation within polyglutamine (polyQ) tract proteins is known to underlie a number of severe neurodegenerative disorders such as Huntington’s Disease and Spinocerebellar Ataxia. Using a bioinformatics approach, we have identi􀃕ed a novel protein, FAM171B, that contains a stretch of 14 consecutive glutamines. Using in situ hybridization and immunohistochemistry experiments, our data strongly suggests that FAM171B is widely expressed in the brain with abundant expression in the hippocampus, cortex, and cerebellum. To begin elucidating FAM171B sub-cellular location we are using confocal 􀃖uorescence imaging of GFP-fusion tagged FAM171B and anti-FAM171B antibodies in vitro. Our 􀃕ndings indicate that FAM171B displays a punctate/vesicular staining pattern throughout the cytoplasm of human glioblastoma tissue culture cells and primary mouse cortical neurons. FAM171B localization is particularly enriched in the peri-nuclear region and adjacent to the plasma membrane. Current studies are utilizing organelle speci􀃕c markers to verify sub-cellular locale and live-cell imaging to assay whether FAM171B may tra􀃞c between intracellular compartments. 
    more » « less